Assessing the effects of time and spatial averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments.
نویسندگان
چکیده
The effect of time and spatial averaging on (15)N chemical shift/(1)H-(15)N dipolar correlation spectra, i.e., PISEMA spectra, of alpha-helical membrane peptides and proteins is investigated. Three types of motion are considered: (a) Librational motion of the peptide planes in the alpha-helix; (b) rotation of the helix about its long axis; and (c) wobble of the helix about a nominal tilt angle. A 2ns molecular dynamics simulation of helix D of bacteriorhodopsin is used to determine the effect of librational motion on the spectral parameters. For the time averaging, the rotation and wobble of this same helix are modelled by assuming either Gaussian motion about the respective angles or a uniform distribution of a given width. For the spatial averaging, regions of possible (15)N chemical shift/(1)H-(15)N dipolar splittings are computed for a distribution of rotations and/or tilt angles of the helix. The computed spectra show that under certain motional modes the (15)N chemical shift/(1)H-(15)N dipolar pairs for each of the residues do not form patterns which mimic helical wheel patterns. As a result, the unambiguous identification of helix tilt and helix rotation without any resonance assignments or on the basis of a single assignment may be difficult.
منابع مشابه
Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers.
Complete resolution of the amide resonances in a three-dimensional solid-state NMR correlation spectrum of a uniformly 15N-labeled membrane protein in oriented phospholipid bilayers is demonstrated. The three orientationally dependent frequencies, 1H chemical shift, 1H-15N dipolar coupling, and 15N chemical shift, associated with each amide resonance are responsible for resolution among resonan...
متن کاملSensitivity-enhanced static 15N NMR of solids by 1h indirect detection.
A method for enhancing the sensitivity of 15N spectra of nonspinning solids through 1H indirect detection is introduced. By sampling the 1H signals in the windows of a pulsed spin-lock sequence, high-sensitivity 1H spectra can be obtained in two-dimensional (2D) spectra whose indirect dimension yields the 15N chemical shift pattern. By sacrificing the 1H chemical shift information, sensitivity ...
متن کاملSolution NMR Measurement of Amide Proton Chemical Shift Anisotropy in 15N-Enriched Proteins. Correlation with Hydrogen Bond Length§
Cross-correlation between 15N-1H dipolar interactions and 1HN chemical shift anisotropy (CSA) gives rise to different relaxation rates of the doublet components of 1H-{15N} peptide backbone amides. Two schemes for quantitative measurement of this effect are described and demonstrated for samples of uniformly 15N-enriched ubiquitin and perdeuterated 15N-enriched HIV-1 protease. The degree of rel...
متن کاملStructure determination of membrane proteins by NMR spectroscopy.
Current strategies for determining the structures of membrane proteins in lipid environments by NMR spectroscopy rely on the anisotropy of nuclear spin interactions, which are experimentally accessible through experiments performed on weakly and completely aligned samples. Importantly, the anisotropy of nuclear spin interactions results in a mapping of structure to the resonance frequencies and...
متن کاملDipolar filtered 1H-13C heteronuclear correlation spectroscopy for resonance assignment of proteins.
Resonance assignment is necessary for the comprehensive structure determination of insoluble proteins by solid-state NMR spectroscopy. While various 2D and 3D correlation techniques involving 13C and 15N spins have been developed for this purpose, H chemical shift has not been exploited sufficiently. We demonstrate the combination of the regular 1H-13C heteronuclear correlation (HETCOR) experim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular NMR
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2003